Siirry suoraan sisältöön

Data-analytiikkaLaajuus (5 op)

Tunnus: R504TL128

Laajuus

5 op

Opetuskieli

  • englanti
  • suomi

Osaamistavoitteet

Opiskelija tuntee valittujen data-analytiikkakirjastojen pääsisällön ja osaa hyödyntää niitä tietojen valmisteluun ja tilastolliseen käsittelyyn koneoppimisen hyödyntämiseksi.

Sisältö

- Tietojen valmistelu: suodatus, hakeminen, yhdistäminen ja luokittelu
- Tietojen visualisointi, tutkimus ja analyysi
- Sopivien data-analytiikkakirjastojen käyttö

Arviointikriteerit, tyydyttävä (1)

Opiskelija osaa valmistella ja muokata yksinkertaisen esimerkkitapauksen dataa siten että sitä voidaan jatkohyödyntää koneoppimisalgoritmeissa tai pilvipalveluissa.

Arviointikriteerit, hyvä (3)

Opiskelija osaa valita tapauskohtaisesti oikeita metodeja datan valmisteluun ja osaa muokata datan jatkohyödynnettäväksi koneoppimisessa ja pilvipalveluissa.

Arviointikriteerit, kiitettävä (5)

Opiskelija osaa valita tapauskohtaisesti parhaat metodit datan valmisteluun ja osaa muokata datan jatkohyödynnettäväksi koneoppimisessa ja pilvipalveluissa.

Ilmoittautumisaika

02.10.2023 - 09.01.2024

Ajoitus

10.01.2024 - 31.05.2024

Laajuus

5 op

Virtuaaliosuus (op)

5 op

Toteutustapa

Etäopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Englanti
  • Suomi
Paikat

0 - 50

Opettaja
  • Tuomas Valtanen
Vastuuhenkilö

Tuomas Valtanen

Opiskelijaryhmät
  • RA54T21S
    Tieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2021

Tavoitteet

Opiskelija tuntee valittujen data-analytiikkakirjastojen pääsisällön ja osaa hyödyntää niitä tietojen valmisteluun ja tilastolliseen käsittelyyn koneoppimisen hyödyntämiseksi.

Sisältö

- Tietojen valmistelu: suodatus, hakeminen, yhdistäminen ja luokittelu
- Tietojen visualisointi, tutkimus ja analyysi
- Sopivien data-analytiikkakirjastojen käyttö

Oppimateriaalit

Opetusmateriaali sekä harjoitukset tulevat olemaan opintojakson Moodle-työtilassa.

Opetusmenetelmät

Online-luennot, työpajat, käytännön esimerkit, itse-opiskelu.

Tenttien ajankohdat ja uusintamahdollisuudet

Opintojakso arvioidaan harjoitusten ja henkilökohtaisen työskentelyn kautta.

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija osaa valmistella ja muokata yksinkertaisen esimerkkitapauksen dataa siten että sitä voidaan jatkohyödyntää koneoppimisalgoritmeissa tai pilvipalveluissa.

Arviointikriteerit, hyvä (3)

Opiskelija osaa valita tapauskohtaisesti oikeita metodeja datan valmisteluun ja osaa muokata datan jatkohyödynnettäväksi koneoppimisessa ja pilvipalveluissa.

Arviointikriteerit, kiitettävä (5)

Opiskelija osaa valita tapauskohtaisesti parhaat metodit datan valmisteluun ja osaa muokata datan jatkohyödynnettäväksi koneoppimisessa ja pilvipalveluissa.

Arviointimenetelmät ja arvioinnin perusteet

Opintojakso arvioidaan arvosanalla, joka on 1-5 tai hylätty (0). Arviointi perustuu opiskelijan tuottamiin harjoitustehtäviin opintojakson aikana.